
1

FlightLinux: A New Option for Spacecraft Embedded Computers
Paper A6P3

Patrick H. Stakem
Principal Investigator

QSS Group, Inc.
7404 Executive Place
Lanham, MD 20706

Abstract - The FlightLinux project has the stated
goal of providing an on-orbit flight
demonstration of the Linux operating system.
This will result in a Technology Readiness Level
of 7. The FlightLinux proof-of-concept
demonstration is being done in conjunction with
the on-orbit UoSat-12 mission, from Surrey
Space Technology, Ltd. (SSTL) in the United
Kingdom. The OMNI project of Code 588 at
GSFC has procured a breadboard of the SSTL
On-Board Computer (OBC), which is being used
for testing. In addition, telecommunications
facilities in Building 23 at GSFC allow direct
communication with the UoSat-12 spacecraft.

This work was conducted under task NAS5-
99124-297, with funding by the NASA Earth
Science Technology Office (ESTO) Advanced
Information Systems Technology (AIST)
Program, NRA-99-OES-08. The work is
conducted by personnel of QSS Group, Inc. in
partnership with NASA/GSFC Codes 586
(Science Data Systems), 582 (Flight Software),
and 588 (Advanced Architectures and
Automation).

Because most of the effort in developing onboard
computers for spacecraft involves adapting
existing commercial designs, the logical next
step is to adapt Commercial Off-The-Shelf
(COTS) software, such as the Linux operating
system. Given Linux, many avenues and
opportunities become available. Web serving and
file transfers become standard features. Onboard
LAN and an onboard file system become
"givens." Java is trivial to implement.
Commonality with ground environments allows
rapid migration of algorithms to the flight
system, and tapping into the worldwide expertise
of Linux developments provide a large pool of
development and debugging talent. Full source
for the operating system and drivers is available
without cost.

Since we posted our goals of keeping the
FlightLinux open source, within the meaning of
the GNU license [1], we have had numerous
offers of collaboration on the project. These
include representatives of U.S. and European
aerospace companies and individuals. The
interest in the FlightLinux Project continues to
grow due to the increasing exposure of our web
site.

We are currently heavily into the development
and testing of the FlightLinux port for the UoSat-
12 onboard computer. We have received
tremendous cooperation from SSTL and the
Operating Missions as Nodes on the Internet
(OMNI) Project, the owners of the UoSat-12
breadboard.

A significant challenge in the next phase of the
project will be to complete the paper work, so
that the FlightLinux software may be legally
"exported" to the UoSat-12, a British platform.
This process is expected to take 6 months and
was unanticipated. The National Aeronautics and
Space Administration (NASA) has confirmed
that flight software is considered an export-
controlled commodity on the Department of
State's Munitions List. This issue is being
worked with the Goddard Space Flight Center
(GSFC) Legal Council. We still are hopeful we
can release the FlightLinux software under the

2

terms of the GPL (GNU Public License) as Open
Software.

An initial build of the FlightLinux software has
been running since March 2001.

The UoSat-12 breadboard arrived at the OMNI
Lab and was tested successfully by the end of
April 2001. The breadboard has an associated
Windows-NT machine to load software via the
Controller Area Network (CAN) bus or the
asynchronous port and to provide debugging
visibility. From QSS, we can access the
breadboard facility via the "PC-Anywhere"
software with the appropriate link security.

The initial FlightLinux software load is
approximately 400,000 bytes in size. The nature
of the UoSat-12 memory architecture at boot
time limits the load size to less than 512,000
bytes. Four megabytes of memory is available
after the loader, which is Read-Only Memory
(ROM)-based, completes. The software load
includes: 1) a routine to setup the environment
and 2) a routine to decompress and start the
Linux kernel. The kernel is the central portion of
the operating system, a monolithic code entry. It
controls process management, Input/Output, the
file system, and other features. It provides an
executive environment to the application
programs, independent of the hardware.

Extensive customization of the SETUP routine,
written in assembly language, was required. This
routine in its original form relies on Basic
Input/Output System (BIOS) calls to discover
and configure hardware. In the UoSat
configuration, there is no BIOS function,
therefore, these sections were replaced with the
equivalent code. Sections of SSTL code were
added to configure the unique hardware of the
UoSat computer. The SETUP routine then
configures the processor for entry to Protected
Mode and invokes the decompression routine for
the kernel. The SETUP routine is approximately
750 bytes in length and represents the custom
portion of the code for the UoSat software port.
The remaining code is COTS Linux software.
This process would be much the same for any
FlightLinux port.

 The breadboard architecture includes an
asynchronous serial port for debugging. We are
utilizing this extensively for debugging . On the
spacecraft, the asynchronous port exists, but it is
not connected to any additional hardware.

FlightLinux will be implemented in an
incremental manner. The initial software build
does a "Hello, World" aliveness indication via
the asynchronous port and will allow login.
Synchronous serial drivers will be integrated to
allow communication in the flight configuration.
The bulk memory device driver, which uses the
32-megabyte modules of extended memory as a
file system, will be added next. The breadboard
has a single 32-megabyte module, and there are
four such modules in the flight configuration.
The CAN bus drivers and the network interface
will be added later.

Once we obtain 1) the permission to "export" the
software and 2) the SSTL agreement to uplink,
we will load a simplified "Hello, World" test
kernel in the on-orbit spacecraft for testing.
Additional modules can be uplinked later on an
incremental basis.

Open-Source Usage

The FlightLinux Project is exploring new issues
in the use of "free software" and open-source
code, in a mission-critical application. Open-
Source code, as an alternative to proprietary
software, has advantages and disadvantages. The
chief advantage is the availability of the source
code, with which a competent programming
team can develop and debug applications, even
those with tricky timing relationships. The Open-
Source code available today for Linux supports
international and ad hoc standards. The use of a
standards-based architecture has been shown to
facilitate functional integration. It is a
misconception that "free software" is necessarily
available for little or no cost. The "free" part
refers to the freedom to modify the source code.
The basis of FlightLinux, the BlueCat release of
the embedded Linux code, costs $200.

A disadvantage of developing with Open Source
may be the perception that freely downloadable
source code might not be mature or trustworthy.
Countering this argument is the growing
experience that the Open-Source offerings are as
good as, and sometimes better than the
equivalent commercial products. What is needed,
however, is a strong configuration control
mechanism. For the FlightLinux product, the
QSS Team will assume the responsibility of
making the "official" version available.

3

Issues on the development and use of Open-
Source software on government-funded and
mission-critical applications are still to be
explored.

Target Architectures

Various microprocessor architectures have been
and are being adapted from commercial products
for space-flight use. For all of the primary
architectural candidates we identified, Linux is
available in COTS form. The primary hardware
for flight computers in the near term appear to be
derived from the Motorola PowerPC family
(RHPPC, RAD6000, RAD750), the SPARC
family (EH32), the MIPS family (Mongoose,
RH32), the Intel architecture (space flight
versions of 80386, 80486, Pentium, Pentium-II,
Pentium-III), and the Intel ARM architecture.
Versions of FlightLinux for the PowerPC and
MIPS family are important goals.

Given the candidate processors identified for
missions under development and planned in the
short term, we then examined the feasibility of
Linux ports for these architectures. In every case,
a Linux port was not only feasible, but is
probably available as COTS. Each would need to
be customized to run on the specific hardware
architecture configuration of the target board.

Existing space processors in recent or planned
use include the RAD6000, the RH32, and the
MIPS-derived Mongoose-V. Generally, Linux
requires a Memory Management Unit (MMU)
for page-level protection, as well as dynamic
memory allocation. However, ports of Linux
(uCLinux) exist for the Motorola ColdFire
processor series and similar architectures, all
without memory management. The ELKS
variant of Linux runs on Intel architecture
without memory management. The Mongoose
architecture does not include memory
management hardware. A Mongoose port of
Linux is feasible, and this has been examined in
conjunction with GSFC, Code 582, Flight
Software Branch. The future usage plans of these
hardware architectures will determine the
direction of our efforts on the FlightLinux
software ports. The RAD6000 is reported to be
"a direct transfer of the IBM RISC System/6000
single-chip CPU to the Lockheed Martin
radiation-hardened process." The RAD/6000 is a
PowerPC-like architecture; IBM implemented
their later RAD/6000 systems with PowerPC
chips. The PowerPC architecture is the result of a

joint venture between IBM and Motorola, and
incorporates the instruction set of the RAD/6000
line, with the RISC features of the Motorola 88k
line.

Emerging space processors include Honeywell's
RHPPC, the Lockheed's RAD750, ESA's
ERC32, and the Sandia radiation-hard Pentium.
All are viable targets for FlightLinux. The
RHPPC and the RAD750 are variations of the
Motorola PowerPC architecture. GSFC Code
586 already has Linux running on the PowerPC
architecture, in a laboratory environment. The
Intel (Pentium) version of Linux is the most
common and can be found in the Code 586 lab as
well. ESA's ERC32 is a variation on the SPARC
architecture, and Linux is available for the Sun
Sparc architecture. The term COTS should be
taken to mean that a commercial version for that
processor architecture is available. A specific
port for the Flight Computer embedded board
would involve coding specific device drivers,
reconfiguration, and recompilation of the kernel.
Linux is a 32-bit operating system, appropriate
for matching the emerging 32-bit class of flight
computers.

POSIX

POSIX is an IEEE standard for a Portable
Operating System-based Unix. The use of a
POSIX-compliant operating system and
applications has many benefits for flight
software. Among these benefits are: 1) software
library reuse between missions and 2) software
commonality between ground and flight
platforms. For compliant code, the function calls,
arguments, and resultant functionality are the
same from one operating system to another.
Source code does not have to be rewritten to port
to another environment. Linux variants are
mostly, but not completely, POSIX-compliant.
The POSIX standards are now maintained by an
arm of the IEEE called the Portable Applications
Standards Committee (PASC) with the
associated web site http://www.pasc.org/.

POSIX compliance is certified by running a
POSIX Test Suite, available from the National
Institutes of Standards and Technology (NIST).
At the moment, we have no plans for POSIX
compliance testing of various variations of
Linux, although this is being pursued by GSFC.

The advantages of Linux are numerous, but the
requirements for spacecraft flight software are

4

unique and non-forgiving. Traditional spacecraft
onboard software has evolved from being
monolithic (without a separable operating
system), to using a custom operation system
developed from scratch, to using a commercial
embedded operating system such as VRTX or
VxWorks. None of these approaches have
proved ideal. In many cases, the problems
involved in the spacecraft environment require
access to the source code to debug. This becomes
an issue with commercial vendors. Cost is also
an issue. When source code is needed for a
proprietary operating system, if the manufacturer
chooses to release it at all, it will be under a very
restrictive non-disclosure agreement, and at
additional cost. The Linux source code is freely
available at the beginning of the effort.

As a variation of Linux, and thus Unix,
FlightLinux is Open Source, meaning the source
code is readily available and free. FlightLinux
currently addresses soft real-time requirements
and is being extended to address hard real-time
requirements for applications such as attitude
control. There is a wide experience base in
writing Linux code that is available to tap.

The use of the FlightLinux operating system will
simplify several previously difficult areas in
spacecraft onboard software. For example, the
FlightLinux system imposes a file system on
onboard data storage resources. In the best case,
Earth-based support personnel and experimenters
may network-mount onboard storage resources
to their local file systems. The FlightLinux
system both provides a path to migrate
applications onboard and enforces a
commonality between ground-based and space-
based resources.

We are pursuing the IEEE POSIX compliance
issues of standard embedded Linux, in parallel
with an effort in GSFC Code 582, which is
collecting a library of POSIX-compliant flight
applications software. FlightLinux will also
enable the implementation of the Java Virtual
Machine, allowing for the up-link of Java applets
to the spacecraft.

Linux is not by nature or design a real-time
operating system. Spacecraft embedded flight
software needs a real-time environment in most
cases. However, there are shades of real time,
specified by upper limits on interrupt response
time and interrupt latency. We can generally
collect these into hard real-time and soft real-

time categories. Examples of hard real-time
requirements would be for attitude control,
spacecraft clock maintenance, and telemetry
formatting. Examples of soft real-time
requirements would include thermal control, data
logging, and bulk memory scrubbing.

Unix, and Linux, were not designed as real-time
operating systems, but do support multi-tasking.
Modifications or extensions to support and
enforce process prioritization are necessary to
apply Linux to the embedded real-time control
world.

In one model, a process may yield the CPU to
another pending task. In a preemption scheme, a
running process is stopped, and a pending
process is started. In another scheme, time
slicing, a "round-robin" priority scheme allows
equal access to all tasks, or a variation, with a
high-priority and a low-priority queue. It is
generally agreed that a preemptive scheduling
scheme allows for greater concurrency in a real-
time system. Beyond the process-switching
scheme is the interrupt prioritization. Here, we
mean asynchronous interrupts from external
sources. Interrupt prioritization is determined
and enforced by the hardware configuration.
Also, interrupt servicing supersedes software
process execution in general.

Problems originate from the fact that the
traditional Unix or Linux kernel is a monolithic
entity that governs process prioritization.
Interrupt drivers and the kernel itself do not
participate in the prioritization scheme. The
kernel typically has large stretches of non-
preemptible code. This is necessarily in the
design so that data structures can be modified in
an atomic fashion. In a Linux kernel, all interrupt
handlers run at a higher priority than the highest-
priority task. In the Unix view, the kernel is the
top level and most important task. In the real-
time control world, this is not necessarily true.

One approach to correcting this is to implement a
threaded execution approach for the kernel and
the interrupt handlers. The question arises as to
how much the Linux kernel can be modified and
still be referred to as a Linux kernel. Another
approach is to treat the kernel itself as a
scheduled task, under a Real Time Task Manager
that manages process prioritization and takes
over control of interrupts. This approach has
been referred to as kernel cohabitation.

5

At least two real-time schedulers for Linux are
available for download. These are a Rate
Monotonic Scheduler, which treats tasks with a
shorter period as tasks with a higher priority, and
an Earliest Deadline First (EDF) scheduler.
Other approaches are also possible. It is not clear
which approach will prove the best in the
spacecraft-operating environment.

Linux is evolving in the direction of full POSIX
compliance. The GSFC Flight Software Branch,
Code 582, is building a collection of POSIX-
compliant application software. The question
remains as to how much POSIX-compliance is
enough. Complete compliance with the standard
for applications and the operating system is
probably not required nor warranted.

The Bulk Memory Device Driver

Spacecraft onboard computers do not usually
employ rotating magnetic memory for secondary
storage. Initially, magnetic tape was used, but
now the state of the art is to use large arrays of
bulk Dynamic Random Access Memory
(DRAM), with various error detection and
correction hardware and/or software applied.

A device driver is a low-level software routine
that interfaces hardware to the operating system.
It abstracts the details of the hardware, in such a
way that the operating system can deal with a
standardized interface for all devices. In Unix-
type operating systems such as Linux, the file
system and the I/O devices are treated similarly.

Device drivers are prime candidates for
implementation in assembly language because of
the need for bit manipulation and speed. They
can also be implemented in higher-order
languages such as "c" however. Typical device
drivers would include those for serial ports, for
parallel ports, for the mass storage interface
(SCSI, for example), for the LAN interface, etc.
Device drivers are both operating system-
specific, and specific to the device being
interfaced. They are custom code, created to
adapt and mediate environments.

The current state of the art for spacecraft
secondary storage is bulk memory, essentially
large blocks of DRAM. This memory, usually
still treated as a sequential access device, is
mostly used to hold telemetry during periods
when ground contact is precluded. Bulk memory
is susceptible to errors on read and write,

especially in the space environment, and needs
multi-layer protection such as triple-modular
redundancy (TMR), horizontal and vertical
Cyclic Redundancy Codes (CRC), Error
Correcting Codes (ECC), and scrubbing.
Scrubbing can be done by hardware or software
in the background. The other techniques are
usually implemented in hardware. With a
Memory Management Unit (MMU), using 1:1
mapping of virtual to physical addresses, the
MMU can be used to re-map around failed
sections of memory.

Although we usually think of bulk memory as a
secondary storage device with sequential access,
it may be implemented as random access
memory within the computer's address space.
This is the approach with UoSat-12.

The Flash File System (FFS) has been developed
for Linux to treat collections of flash memory as
a disk drive, with an imposed file system.
Although we are dealing with DRAM and not
flash, we can still gain valuable insight from the
FFS implementation. In addition, the
implementation of Linux support for the
Personal Computer Memory Card International
Association (PCMCIA) devices provides another
useful model.

The onboard computer on the UoSat-12
spacecraft has 128 megabytes of DRAM bulk
memory. It is divided into four banks of 32
megabytes each, mapped through a window at
the upper end of the processor's address space.
This is the specific device driver that the
FlightLinux team will develop and use as a
model for future development of similar
modules. The current software of the UoSat-12
onboard computer treats this bulk memory as
paged random access memory and applies a
scrubbing algorithm to counter environmentally
induced errors.

The RAM disk is a disk-like block device
implemented in RAM. This is the correct model
for using the bulk memory of the onboard
computer as a file system. Multiple RAM disks
may be allocated in Linux. The standard Linux
utility "mke2fs," which creates a Linux second
extended file system, works with RAM disk and
supports redundant arrays of inexpensive disks
(RAID) level 0.

The RAID model was developed to use large
numbers of commodity disk drives combined

6

into one large, fault-tolerant, storage unit. The
approach can be applied to bulk memory as well.
RAID can be implemented in software or
hardware. For the purposes of this document, we
will consider RAID software implementations.
Software RAID is a standard Linux feature,
available as a patch to the 2.12 Kernels and
slated to become an included feature in Kernel
2.4.

This initial version of the driver will use memory
mirroring, with memory scrubbing techniques
applied. In the simplest case, we will treat three
of the four available 32-megabyte memory pages
as a mirrored system. The memory scrubbing
technique will be derived from the current
scheme used by SSTL, as will the paging
scheme. The next version of the driver will use
all four of the available 32-megabyte memory
pages with distributed parity. The performance
with respect to write speed is expected to be less
than with the Level 0, but the memory resilience
with respect to error should be much better.

It is unclear without further testing whether the
RAID technique will be sufficient to counter the
environmentally induced errors expected in the
bulk memory on-orbit. It is generally accepted
that RAID is not intended to counter data
corruption on the media, but rather to allow data
recovery in case of media failure. A defined
testing approach will be used with the bulk
memory device driver on the breadboard facility.
More extensive testing on-orbit with the UoSat-
12 spacecraft will be required to validate the
approach.

Onboard LAN

Given that the Linux operating system is
onboard the spacecraft, support for a LAN
becomes relatively easy. Extending the onboard
LAN to other spacecraft units in a constellation
also becomes feasible, as does having the
spacecraft operate as an Internet node.

Interface between spacecraft components is
usually provided by point-to-point connections,
or a master/slave bus architecture. The use of a
LAN onboard is not yet common. This is
partially due to the lack of appropriate space-
qualified components.

The avionics bus MIL-STD-1553 and its optical
derivative, 1773, are commonly used between
spacecraft components. This bus, used in

thousands of military and commercial aircraft ,
has a legacy of applications behind it. Also, 1553
is transformer-coupled and dual-redundant,
providing a level of failure protection. The raw
data rate is 1 megabit-per-second. It is a
master/slave architecture.

For point-to-point connections that do not
require the complexity of a 1553/1773
connection, a synchronous serial connection such
as RS-422/23 with a bit rate of approximately 1
megabit-per-second is typically used.

A LAN-type architecture is typically used in
office and enterprise environments (and
spacecraft control centers). It provides a
connection between peer units, or clients, and
servers. The typical LAN uses a coax or twisted
pair connection at a transmission rate of 10
megabits per second, a twisted pair connection at
100 megabits per second, or optical at 155
megabits per second, with higher speeds
possible.

Usually, a LAN is configured with a repeating
hub or a central switch between units. The
standard protocol imposed on the physical
interface is Transmission Control Protocol
/Internet Protocol (TCP/IP), although others are
possible (even simultaneously). The TCP/IP
protocol has become a favored approach to
linking computers around the world. The
protocol is supported by Linux and most other
operating environments.

The UoSat-12 configuration will allow us to
exercise the TCP/IP and CAN bus components
of an onboard LAN.

Synopsis

We believe that Linux will be a viable choice for
flight computer operating systems. We intend to
validate that with extensive breadboard and
onorbit testing. We also believe that the Open
Source development approach is a viable one for
critical software for space missions.

REFERENCES

[1] http://www.gnu.org/licenses/licenses.html

